2(w^2)+10w+9=(w+2)(w+2)

Simple and best practice solution for 2(w^2)+10w+9=(w+2)(w+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(w^2)+10w+9=(w+2)(w+2) equation:



2(w^2)+10w+9=(w+2)(w+2)
We move all terms to the left:
2(w^2)+10w+9-((w+2)(w+2))=0
We multiply parentheses ..
2w^2-((+w^2+2w+2w+4))+10w+9=0
We calculate terms in parentheses: -((+w^2+2w+2w+4)), so:
(+w^2+2w+2w+4)
We get rid of parentheses
w^2+2w+2w+4
We add all the numbers together, and all the variables
w^2+4w+4
Back to the equation:
-(w^2+4w+4)
We add all the numbers together, and all the variables
2w^2+10w-(w^2+4w+4)+9=0
We get rid of parentheses
2w^2-w^2+10w-4w-4+9=0
We add all the numbers together, and all the variables
w^2+6w+5=0
a = 1; b = 6; c = +5;
Δ = b2-4ac
Δ = 62-4·1·5
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4}{2*1}=\frac{-10}{2} =-5 $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4}{2*1}=\frac{-2}{2} =-1 $

See similar equations:

| (w^2)+w=-2 | | (w^2)+w=2 | | 16=21^3x | | y=-7.75 | | 7x-3÷6-2x-3÷4=5÷4 | | 9x-24=85 | | 39+2x=15x+40 | | 3x+4(7x+8)=4x-(2x+5) | | -x+5.3=8.9- | | (1/5*y)+11=3-(3/5*y) | | 4x-2(x+4)=x+4 | | 3(4x-1)-3=x+1 | | -3a(2a-4)=0 | | 6x-43=4x-9 | | 3(x-1)7=2(x+1) | | (x/(1/5))-0.012=0.306 | | 5(x-3)=2(x+2) | | (3a–5)+(4a–3)=90 | | 3(x/3-2.1=6.9) | | $8+$0.10x=$19+0.08x | | x+4/3=-6 | | X-1/x+2-1/2=0 | | 6a+3/a-2=1 | | -2x+6=-2x+3 | | (M+3)(m-5)=(m-2)(m+5) | | 8x+4+(18000/x)=0 | | 8x^2+4x+18000=0 | | 110-x=65 | | -x-6=3x+7=0 | | 3x+4-2x/2-5x-7x=7/58 | | 2×+22y=8y2×-2y=4 | | x2-6x-2=-6 |

Equations solver categories